
基于知识图谱的问答系统关键技术

肖仰华（Yanghua Xiao）
复旦大学知识工场实验室(Kw.fudan.edu.cn)

上海数眼科技发展有限公司(shuyantech.com)

kw.fudan.edu.cn/qa

Outline

• KBQA background
• 不倒翁问答系统
• Template based KBQA
• Conclusion

Backgrounds
• Question Answering (QA) systems answer natural language

questions.

kw.fudan.edu.cn/qa

Google Now Apple Siri Amazon Alexa Microsof CortanaIBM Watson

Why QA
• QA application:

• One of the most natural human-computer
interaction

• Key components of Chatbot, which attracts
wide research interests from industries

• QA for AI:
• One of most important tasks to evaluate the

machine intelligence: Turing test
• Important testbed of many AI techniques,

such as machine learning, natural
language processing, machine cognition

kw.fudan.edu.cn/qa

Turing test

Why KBQA?
More and More Knowledge bases are created

• Google Knowledge graph, Yago，WordNet, FreeBase, Probase, NELL, CYC, DBPedia

• Large scale and high quality

kw.fudan.edu.cn/qa

A piece of knowledge base, which consist of
triples such as (d, population, 390k)The boost of knowledge bases

实用化知识问答-机遇与挑战

• 机遇：从人工智障到人工智能
• 大量的问答模型研究
• 大量的知识库与语料

• 挑战
• 如何构建一个实用化问答系统

准确
性

召回
率

健壮
性

样本
稀缺

泛化
能力

复杂
问答

挑战

为什么现在人工智能助理都像人工智障？

2017十大“人工智障”事件 科技巨头无一幸免

从人工智能变成“人工智障”，聊天机器人殇在哪？

Outline

• KBQA background
• 不倒翁问答系统
• Template based KBQA
• Conclusion

总览

• “不倒翁“知识问答DEMO
• http://218.193.131.250:20013/
• http://shuyantech.com/qa

• 知识问答
• 知识图谱、深度学习、规则系统

输入问题

支持问题例子

答案

额外信息

“不倒翁”知识问答系统架构

IRQA

Deep QA 知识图谱
（CN-DBpedia）

互联网语料
（文本、问答对）

Q

A

Entity
Linking

常识问答库

Matching based
QA

专家系统
枚举

常识

是否

递归

比较

类型检查

单知识点

Mention2Entity

Entity Types

Taxonomy Question Types

Synonymous

元数据

Type Properties

Property mentions

Domain-ranges for
Properties

Template based
QA

问答模型

Table QA
Commonsense

QA

模块列表

• Entity Linking
• 实体识别、消歧、链接到知识库

• 专家系统
• 基于复杂规则解决递归、比较等复杂问题
• 决定子模块的选择性调用
• 复杂问题存在规律性且缺少训练数据，规则系统是较优选择

• 元数据
• 提供问答系统所需要的语言知识、词汇知识、本体等元数据

模块列表
• Matching based QA

• 基于深度学习对问题库进行模糊匹配
• 解决常识类问答

• e.g. 为什么天空是蓝色的

• Deep QA
• 基于深度学习将问句匹配到知识库中

的某条具体知识
• 解决单条事实类问答

• e.g. 七里香是谁唱的

• IRQA
• 到互联网上搜索，并使用深度机器阅

读理解模型获取答案
• 获取到的答案可以用于补全知识库
• 解决知识库缺失问题

• e.g. 鲁迅的身高是多少

• Template based QA
• 基于taxonomy、问答语料对训练生成

概念语义模板
• 利用概念语义模板对问题进行理解，

完成回答
• 适用于对于新实体的问答

• Eg. 华为P20多大尺寸？

• Table/list QA
• 基于table、list回答枚举类问题

• Eg，复旦有哪些院士？

• Commonsense QA
• 回答常识问答类问题

• Eg，天空为什么是蓝色的？

Mention2Entity库
• 形式： 字符串（mention）à 实体（entity）或 实体列表 （entity list）
• 示例

• “复旦”à“复旦大学”
• “周董”à“周杰伦”
• “雨神” à [“萧敬腾（华语流行男歌手）”, “雨神（中国神仙）”]

• 作用：提高QA系统识别实体的能力

等价属性库
• 形式：属性 à 其他等价属性列表
• 示例

• “妻子”à [“夫人”，“老婆”，“伉俪”，“爱人”，“配偶”]
• “出生日期”à [“生日”，“出生年月”，“出生时间”，“诞辰”]
• “主演”à [“主要演员”，“影片主演”，“领衔主演”]

• 提高QA系统识别属性的能力

属性元数据库
• 形式：属性 à domain à range
• 示例

• “妻子”à 人物 à 人物
• “出生日期”à 人物 à 日期
• “主演”à 电影 à 演员

• 提高QA系统的准确率

人物

人物

人物

日期

电影

演员

Short	text

Segment	Resolution

Entity	Recognition

Subject	Entity	
Selection

Linked	Entities

Text	Segmentation

Entity	Recognition

Online

Local	Disambiguation

Mention	Detection

针对QA的实体链接

• 段解析
• 检测出所有的mention
• 在有限的上下文进行局部链接

• 利用实体概念作为细粒度的主题
• 用词向量相似度来解决稀疏文本的问题

• 实体识别
• 利用局部链接的分数进行语义文本划分
• 根据段的语法语义信息进行实体识别

• 主体实体选择
• 选择作为询问主体的实体

• 实体关系 & 实体流行度

Running example

• Input: text sequence: 刘若英语怎么样
• Segment Resolution

• Detect all possible mention: “刘若”、“刘若英”、“英语”
• Candidate entity generation: 刘若1KB、刘若2KB 、刘若英KB、英语KB…
• Local disambiguation: φ(刘若,刘若1KB)=0.4、φ(刘若,刘若2KB)=0.3…

• Entity Recognition
• Text segmentation: 刘若|英语|怎么样
• Entity recognition: 刘若、英语

• Global linking: rel(刘若,刘若1KB)=0.01、rel(刘若,刘若2KB)=0.2
• Output: mention and entity {(刘若, 刘若2KB), (英语, 英语KB)}

Calculate from KB

φ 𝑚,𝑒 = ε · 𝑠𝑖𝑚* 𝑚,𝑒 + (1 − ε) · 𝑠𝑖𝑚0 𝑚, 𝑒 Topic coherence: 𝑠𝑖𝑚* 𝑚, 𝑒

Textual similarity: 𝑠𝑖𝑚0 𝑚, 𝑒

𝑊 = 𝑎𝑟𝑔𝑚𝑎𝑥	𝑂 𝑊 = log 𝑃 𝑊 = <𝑃 𝑤>

?

>@A

结果
• Entity linking for QA 结果：

• 准确率：90%，召回率: 94.3% +
• F1: 92.0% +

李娜（中国女子网球名将）：人物、体育人物、运动员、名将

李娜（流行歌手、佛门女弟子）：人物、演员、歌手、弟子

Short Text Entity Linking with Fine-grained Topics CIKM2018, October 2018, Lingotto, Turin, Italy

robust local approach is dominant. Our approach outperforms others
in both datasets.

5.3 Effectiveness of Text Segmentation

We test the text segmentation performance of our approach on the
datasets published in [8]. We choose the two simplified Chinese
segmentation datasets, MSR (Microsoft Research) and PKU (Peking
University), as our evaluation dataset. We compare our approach
with several popular Chinese segmentation tools, including:

• jieba [23]. It is a Chinese segmentation tool based on a prefix
dictionary structure to achieve efficient word graph scanning.
It uses dynamic programming to find the most probable com-
bination based on the word frequency. For unknown words, a
HMM-based model is used with the Viterbi algorithm.

• SnowNLP [22]. It is a simplified Chinese text processing
tool including text segmentation. It apply a character-based
generative model [40] for text segmentation.

As our segmentation approach is entity-oriented, it will produce
many entity name segments which are reasonable but not in the
standard answer. For example, our approach recognize "reform and
opening" as an entity segment while in the standard answer of PKU
it is segmented apart. Hence, we invited volunteers to relabeled the
conflicting segmentations our system outputs and construct modi-
fied versions of those datasets. We invited 3 volunteers to evaluate
the conflict segmentations and adopt the majority. And we will re-
lease these relabeled datasets, named MSR-Seg-E and PKU-Seg-E,
respectively.

The measurement of text segmentation is the precision and recall
of the segmenting points. The results are shown in Figure 3. Our
approach has the best precision and F1 score.

Table 3: Chinese text segmentation results

MSR-Seg-E PKU-Seg-E
Methods Prec. Reca. F1 Prec. Reca. F1
Jieba 89.3 96.2 92.6 93.4 93.6 93.5
SnowNLP 84.4 96.4 87.1 94.5 94.5 90.7
Our Method 96.2 94.7 95.4 97.8 91.7 94.7

5.4 Effectiveness of Entity Recognition

As an entity annotation task, the effectiveness of entity recognition
essential. Our approach also has good performance on entity recog-
nition task. The four datasets (NLPCC, NTF, HQA and CNDL) we
published are also measurements for entity recognition task, from
which we select 1037 samples that are difficult for entity recognition
as our evaluation data for entity recognition task.

We compare our systems with existing popular entity recognition
tools and API services on the entity recognition evaluation data.
The results are shown in Table 4. As mentioned above, the entities
we are concerned about are more than named entities, so our en-
tity recognition task is different from NER problem. To make the
tasks as consistent as possible, we filter out the results of Standford
NER by the types we are not concerned about, such as ’NUMBER’,
’MONEY’, ’DATE’, ’ORDINAL’, ’TIME’ and ’PERCENT’. This
ensure that the output types of NER method is a subset of entities in

our dataset. But there are still some types of entities in our dataset
do not belong to named entities. Therefore, the recall score of the
NER method tends to be low, while the precision score is confident.
Our method has the best performance in both precision and recall.

Table 4: Results of entity recognition task

Methods Prec. Reca. F1
Stanford NER [28] 58.7 39.5 47.2

Baidu Entity Annotation [2] 65.5 78.2 71.3
Our Method 91.0 89.4 90.2

6 RELATED WORK

In this section, we discuss related work in three aspects: entity
linking, short text conceptualization, and text segmentation.

6.1 Entity Linking

Entity Linking, can be also referred to as named entity disambigua-
tion (NED) when the linked entities are named entities. Entity linking
is a standard tool offered by Baidu [2], IBM [21], Google [14] and
Microsoft [29] cloud services. Entity linking has seen sustained
research since 2006, and much recent interest.

Most recent entity linking methods are supervised approaches,
relying on high-quality manually-annotated data and massive anchor
text in Wikipedia [31].Some exploit extract features [27, 31], some
learn the representations [24], some leverage the entity embedding
[16] and some apply neural attention of the context [13]. However,
the training data for learning are limited in English and unsuitable
for short text scenario.

Previous unsupervised methods are incapable of handling the
sparsity and noisy problem of short text. For local approaches, text-
based comparison are usually applied, such as TFIDF [34] and
keyphrase matching [19]. However, the short text context is usually
sparse and noisy, the comparison based on words will miss in most
of the time. Global approaches take advantage of entities in the
context and disambiguate by their coherence, including relation
inference [7], graph-based models [3] and probabilistic models [12].
These methods heavily rely on the relations among the entities in the
context. But in short text scenario, entities in the context are usually
few, which makes those global approaches perform poorly.

There are a few previous works on the short text entity linking.
TAGME’s [10, 11] disambiguation strategy merely relies on the a
global voting mechanism of other mentions in the context, which
will still suffer from the same problem of global approaches. [4]
take advantage of the language model around the entity mentions in
corpus to relate words with entities. However, for long-tailed entities
with few occurrences and information, the language model will be
underestimated. [5] try to solve the problem by representing the
entity as the centroid of word vectors of its relevant words. However,
relevant words of entities are noisy and representations by word
vector are implicit, which will make the model unpredictable.

6.2 Short Text Conceptualization

Conceptualization is a kind of explicit representation for the short
text. Short text understanding is very challenging because short text

中文通用Entity Linking的准确率Entity Linking已经广泛应用在新闻、出版等领域

Deep QA

Deep
Predicate
Matching

Deep
Pattern

Matching
Deep QA

解决训练数据充足的问法和属性之间的
匹配问题，具有强大的错误容忍能力

Few-Shot Learning：解决训练数据稀少的问法
和属性之间的匹配问题，能处理垂直领域属性
和特殊问法，无需训练即可添加规则

• 目标：
• 单知识点、且三元组知识库包含答案的问题

专家系统

• 复杂问题存在规律性且缺少训练数据，规则系统是较优选择
• 目标：

• 基于复杂规则决定子模块的选择和组合调用策略
• 解决递归、比较等复杂问题

• 规则配置：

条
件

动
作

规
则

测试

• NLPCC-2016 KBQA，Testset，
1000 QA-pairs

• 91.6% Accuracy

• SougouQA Factoid Reading
Comprehension Task，验证集

• 73.3% Exact Match

• IRQA Hand-made Testset
• Exact Match 83.3%
• Acceptable 90.0%

*由于搜索引擎返回结果可能改变，IRQA的返回结果也可能会有不同

Outline

• KBQA background
• 不倒翁问答系统
• Template based KBQA
• Conclusion

Our approach
• Representation: concept based templates.

• Questions are asking about entities. The semantic of the question is reflected by its corresponding
concept.

• Advantage: Interpretable, user-controllable
• Learn templates from QA corpus, instead of manfully construction.

• 27 million templates, 2782 intents
• Understand diverse questions

kw.fudan.edu.cn/qa

How many people are there in Shanghai?

Shanghai 2420万
Population

How many people are there in Beijing?

Beijing 2172万
Population

How many people are there in $City?

Conceptualization
By Probase

Learn from
QA Corpora and KB

System Architecture

• Offline procedure
• Learn the mapping from templates to

predicates: P (p|t),
• Input: qa corpora, large scale taxonomy, KB
• Output: P(P|T)

• Online procedure
• Parsing, predicate inference and answer

retrieval
• Input: binary factoid questions (BFQs)
• Output: answers in KG

different templates for 2782 predicates. The large amount guaran-
tees the wide coverage of template-based QA.

The procedure of learning the predicate of a template is as fol-
lows. First, for each QA pair in Yahoo! Answer, we extract the
entity in question and the corresponding value. Then, we find the
predicate from the knowledge base by looking up the direct predi-
cate connecting the entity and the value. Our basic idea is, if most
instances of a template share the same predicate, we map the tem-
plate to this predicate. For example, suppose questions derived
by template how many people are there in $city? al-
ways map to the predicate population, no matter what specific
$city it is. We can conclude that for certain probability the tem-
plate maps to population. Learning templates that map to a com-
plex knowledge base structure employs a similar process. The only
difference is that we find “expanded predicates” that correspond to
a path consisting of multiple edges which lead from an entity to a
certain value (e.g., marriage ! person ! name).

1.4 Paper Organization
The rest of the paper is organized as follows. In Sec 2, we give an

overview of KBQA. The major contribution of this paper is learn-
ing templates from QA corpora. All technique parts are close-
ly related to it. Sec 3 shows the online question answering with
templates. Sec 4 elaborates the predicates inference for templates,
which is the key step to use templates. Sec 5 extends our solution to
answer a complex question. Sec 6 extends the ability of templates
to infer complex predicates. We present experimental studies in
Sec 7, discuss more related works in Sec 8, and conclude in Sec 9.

2. SYSTEM OVERVIEW
In this section, we introduce some background knowledge and

give an overview of KBQA. In Table 2, we list the notations used
in this paper.

Table 2: Notations
Notation Description Notation Description
q question s subject
a answer p predicate
QA QA corpus o object
e entity K knowledge base
v value c category
t template p+ expanded predicate
V (e, p) {v|(e, p, v) 2 K} s2 ⇢ s1 s2 is a substring of s1
t(q, e, c) template of q by ✓(s) estimation of ✓

conceptualizing e to c at iteration s

Binary factoid QA We focus on binary factoid questions
(BFQs), that is, questions asking about a specific property of an
entity. For example, all questions except f� in Table 1 are BFQs.

RDF knowledge base Given a question, we find its answer in
an RDF knowledge base. An RDF knowledge base K is a set of
triples in the form of (s, p, o), where s, p, and o denote subjec-
t, predicate, and object respectively. Figure 1 shows a toy RDF
knowledge base via an edge-labeled directed graph. Each (s, p, o)
is represented by a directed edge from s to o labeled with predicate
p. For example, the edge from a to 1961 with label dob represents
an RDF triple (a, dob, 1961), which represents the knowledge of
Barack Obama’s birthday.

Table 3: Sample QA Pairs from a QA Corpus
Id Question Answer

(q1, a1) When was Barack Obama
born?

The politician was born in
1961.

(q2, a2) When was Barack Obama
born?

He was born in 1961.

(q3, a3) How many people are
there in Honolulu?

It’s 390K.

QA corpora We learn question templates from Yahoo! Answer,
which consists of 41 million QA pairs. The QA corpora is denoted
by QA = {(q1, a1), (q2, a2), ..., (qn, an)}, where qi is a ques-
tion and ai is the reply to qi. Each reply ai consists of several
sentences, and the exact factoid answer is contained in the reply.
Table 3 shows a sample from a QA corpus.

Templates. We derive a template t from a question q by replacing
each entity e with one of e’s categories c. We denote this template
as t = t(q, e, c). A question may contain multiple entities, and
an entity may belong to multiple categories. We obtain concept
distribution of e through context-aware conceptualization [32]. For
example, question q1 in Table 3 contains entity a in Figure 1. Since
a belongs to two categories: $Person, $Politician, we can derive
two templates from the question: When was $Person born?
and When was $Politician born?.

Figure 3: System Overview

System Architecture. Figure 3 shows the pipeline of our QA sys-
tem, which consists of two major procedures:

• Online procedure: When a question comes in, we first parse
and decompose it into a series of binary factoid questions. The
decomposition process is described in Sec 5. For each binary
factoid question, we use a probabilistic inference approach to
find its value, shown in Sec 3. The inference is based on the
predicate distribution of given templates, i.e. P (p|t). Such dis-
tribution is learned offline.

• Offline procedure: The goal of offline procedure is to learn the
mapping from templates to predicates. This is represented by
P (p|t), which is estimated in Sec 4. And we expand predicates
in the knowledge base in Sec 6, so that we can learn more com-
plex predicate forms (e.g., marriage ! person ! name in
Figure 1).

3. OUR APPROACH: KBQA
In this section, we first formalize our problem in a probabilistic

framework in Sec 3.1. We present the details for most probability
estimations in Sec 3.2, leaving only the estimation of P (p|t) in
Sec 4. We elaborate the online procedure in Sec 3.3.

3.1 Problem Model
KBQA learns question answering by using a QA corpus and a

knowledge base. Due to issues such as uncertainty (e.g. some ques-
tions’ intents are vague), incompleteness (e.g. the knowledge base
is almost always incomplete), and noise (e.g. answers in the QA

567

Problem Model

• Given a question q, our goal is to find an answer v with maximal
probability (v is a simple value)

• Basic idea：We proposed a generative model to explain how a value is
found for a given question,

• Rationality of probabilistic inference
• uncertainty (e.g. some questions’ intents are vague)
• Incompleteness (e.g. the knowledge base is almost always incomplete),
• noisy (e.g. answers in the QA corpus could be wrong)

corpus may be wrong), we create a probabilistic model for QA over
a knowledge base below. We highlight the uncertainty from the
question’s intent to the knowledge base’s predicates [18]. For ex-
ample, the question “where was Barack Obama from” is related to
at least two predicates in Freebase: “place of birth” and “place lived
location”. In DBpedia, who founded $organization? re-
lates to predicates founder and father.

PROBLEM DEFINITION 1. Given a question q, our goal is to
find an answer v with maximal probability (v is a simple value):

argmax
v

P (V = v|Q = q) (1)

To illustrate how a value is found for a given question, we
proposed a generative model. Starting from the user question q,
we first generate/identify its entity e according to the distribution
P (e|q). After knowing the question and the entity, we generate the
template t according to the distribution P (t|q, e). The predicate
p only depends on t, which enables us to infer the predicate p by
P (p|t). Finally, given the entity e and the predicate p, we generate
the answer value v by P (v|e, p). v can be directly returned or em-
bedded in a natural language sentence as the answer a. We illustrate
the generation procedure in Example 1, and shows the dependen-
cy of these random variables in Figure 4. Based on the generative
model, we compute P (q, e, t, p, v) in Eq (2). Now Problem 1 is
reduced to Eq (3).

P (q, e, t, p, v) = P (q)P (e|q)P (t|e, q)P (p|t)p(v|e, p) (2)

argmax
v

X

e,t,p

P (v|q, e, t, p) (3)

Figure 4: Probabilistic Graph
EXAMPLE 1. Consider the generative process of (q3, a3) in Ta-

ble 3. Since the only entity in q3 is “Honolulu”, we generate the
entity node d (in Figure 1) by P (e = d|q = q3) = 1. By conceptu-
alizing “Honolulu” to a city, we generate the template How many
people are there in $city?. Note that the correspond-
ing predicate of the template is always “population”, no matter
which specific city it is. So we generate predicate “population” by
distribution P (p|t). After generating entity “Honolulu” and pred-
icate “population”, the value “390k” can be easily found from the
knowledge base in Figure 1. Finally we use a natural language
sentence a3 as the answer.

Outline of the following subsections Given the above objective
function, our problem is reduced to the estimation of each prob-
ability term in Eq (2). The term P (p|t) is estimated in the offline
procedure in Sec 4. All other probability terms can be directly com-
puted by the off-the-shelf solutions (such as NER, conceptualiza-
tion). We elaborate the calculation of these probabilities in Sec 3.2.
And we elaborate the online procedure in Sec 3.3.

3.2 Probability Computation
In this subsection, we compute each probability term in Eq (2)

except P (p|t).

Entity distribution P (e|q) The distribution represents the enti-
ty identification from the question. We identify entities that meet
both conditions: (a) it is an entity in the question; (b) it is in the
knowledge base. We use Stanford Named Entity Recognizer [13]
for (a). And we then check if it is an entity’s name in the knowledge
base for (b). If there are multiple candidate entities, we simply give
them uniform probability.

We optimize the computation of P (e|q) in the offline procedure
by q’s answer. As illustrated in Sec 4.1, we already extracted a set
of entity-value pairs EVi for question qi and answer ai, where the
values are from the answer. We assume the entities in EVi have
equal probability to be generated. So we obtain:

P (e|qi) =
[9v, (e, v) 2 EVi]

|{e0|9v, (e0, v) 2 EVi}|
(4)

,where [.] is the Iverson bracket. As shown in Sec 7.5, this approach
is more accurate than directly using the NER approach.

Template distribution P (t|q, e) A template is in the form of
When was $person born?. In other words, it is a question
with the mention of an entity (e.g., “Barack Obama”) replaced by
the category of the entity (e.g., $person).

Let t = t(q, e, c) indicate that template t is obtained by replacing
entity e in q by e’s category c. Thus, we have

P (t|q, e) = P (c|q, e) (5)

, where P (c|q, e) is the category distribution of e in context q. In
our work, we directly apply the conceptualization method in [25]
to compute P (c|q, e).

Value (answer) distribution P (v|e, p) For an entity e and a
predicate p of e, it is easy to find the predicate value v by look-
ing up the knowledge base. For example, in Figure 1, let entity
e = Barack Obama, and predicate p = dob. We easily get Oba-
ma’s birthday, 1961, from the knowledge base. In this case, we
have P (1961|Barack Obama, dob) = 1, since Barack Obama only
has one birthday. Some predicates may have multiple values (e.g.,
the children of Barack Obama). In this case, we assume uniform
probability for all possible values. More formalized, we compute
P (v|e, p) by

P (v|e, p) = [(e, p, v) 2 K]
|{(e, p, v0)|(e, p, v0) 2 K}| (6)

3.3 Online Procedure
In the online procedure, we are given a user question q0. We can

compute p(v|q0) by Eq (7). And we return argmaxv P (v|q0) as
the answer.

P (v|q0) =
X

e,p,t

P (q0)P (v|e, p)P (p|t)P (t|e, q0)P (e|q0) (7)

, where P (p|t) is derived from offline learning in Sec 4, and other
probability terms are computed in Sec 3.2.

Complexity of Online Procedure: In the online procedure, we
enumerate q0’s entities, templates, predicates, and values in order.
We treat the number of entities per question, the number of con-
cepts per entity, and the number of values per entity-predicate pair
as constants. So the complexity of the online procedure is O(|P |),
which is caused by the enumeration on predicate. Here |P | is the
number of distinct predicates in the knowledge base.

4. PREDICATE INFERENCE
In this section, we present how we infer predicates from tem-

plates, i.e., the estimation of P (p|t). We treat the distribution
P (P |T) as parameters and then use the maximum likelihood (ML)

568

corpus may be wrong), we create a probabilistic model for QA over
a knowledge base below. We highlight the uncertainty from the
question’s intent to the knowledge base’s predicates [18]. For ex-
ample, the question “where was Barack Obama from” is related to
at least two predicates in Freebase: “place of birth” and “place lived
location”. In DBpedia, who founded $organization? re-
lates to predicates founder and father.

PROBLEM DEFINITION 1. Given a question q, our goal is to
find an answer v with maximal probability (v is a simple value):

argmax
v

P (V = v|Q = q) (1)

To illustrate how a value is found for a given question, we
proposed a generative model. Starting from the user question q,
we first generate/identify its entity e according to the distribution
P (e|q). After knowing the question and the entity, we generate the
template t according to the distribution P (t|q, e). The predicate
p only depends on t, which enables us to infer the predicate p by
P (p|t). Finally, given the entity e and the predicate p, we generate
the answer value v by P (v|e, p). v can be directly returned or em-
bedded in a natural language sentence as the answer a. We illustrate
the generation procedure in Example 1, and shows the dependen-
cy of these random variables in Figure 4. Based on the generative
model, we compute P (q, e, t, p, v) in Eq (2). Now Problem 1 is
reduced to Eq (3).

P (q, e, t, p, v) = P (q)P (e|q)P (t|e, q)P (p|t)p(v|e, p) (2)

argmax
v

X

e,t,p

P (v|q, e, t, p) (3)

Figure 4: Probabilistic Graph
EXAMPLE 1. Consider the generative process of (q3, a3) in Ta-

ble 3. Since the only entity in q3 is “Honolulu”, we generate the
entity node d (in Figure 1) by P (e = d|q = q3) = 1. By conceptu-
alizing “Honolulu” to a city, we generate the template How many
people are there in $city?. Note that the correspond-
ing predicate of the template is always “population”, no matter
which specific city it is. So we generate predicate “population” by
distribution P (p|t). After generating entity “Honolulu” and pred-
icate “population”, the value “390k” can be easily found from the
knowledge base in Figure 1. Finally we use a natural language
sentence a3 as the answer.

Outline of the following subsections Given the above objective
function, our problem is reduced to the estimation of each prob-
ability term in Eq (2). The term P (p|t) is estimated in the offline
procedure in Sec 4. All other probability terms can be directly com-
puted by the off-the-shelf solutions (such as NER, conceptualiza-
tion). We elaborate the calculation of these probabilities in Sec 3.2.
And we elaborate the online procedure in Sec 3.3.

3.2 Probability Computation
In this subsection, we compute each probability term in Eq (2)

except P (p|t).

Entity distribution P (e|q) The distribution represents the enti-
ty identification from the question. We identify entities that meet
both conditions: (a) it is an entity in the question; (b) it is in the
knowledge base. We use Stanford Named Entity Recognizer [13]
for (a). And we then check if it is an entity’s name in the knowledge
base for (b). If there are multiple candidate entities, we simply give
them uniform probability.

We optimize the computation of P (e|q) in the offline procedure
by q’s answer. As illustrated in Sec 4.1, we already extracted a set
of entity-value pairs EVi for question qi and answer ai, where the
values are from the answer. We assume the entities in EVi have
equal probability to be generated. So we obtain:

P (e|qi) =
[9v, (e, v) 2 EVi]

|{e0|9v, (e0, v) 2 EVi}|
(4)

,where [.] is the Iverson bracket. As shown in Sec 7.5, this approach
is more accurate than directly using the NER approach.

Template distribution P (t|q, e) A template is in the form of
When was $person born?. In other words, it is a question
with the mention of an entity (e.g., “Barack Obama”) replaced by
the category of the entity (e.g., $person).

Let t = t(q, e, c) indicate that template t is obtained by replacing
entity e in q by e’s category c. Thus, we have

P (t|q, e) = P (c|q, e) (5)

, where P (c|q, e) is the category distribution of e in context q. In
our work, we directly apply the conceptualization method in [25]
to compute P (c|q, e).

Value (answer) distribution P (v|e, p) For an entity e and a
predicate p of e, it is easy to find the predicate value v by look-
ing up the knowledge base. For example, in Figure 1, let entity
e = Barack Obama, and predicate p = dob. We easily get Oba-
ma’s birthday, 1961, from the knowledge base. In this case, we
have P (1961|Barack Obama, dob) = 1, since Barack Obama only
has one birthday. Some predicates may have multiple values (e.g.,
the children of Barack Obama). In this case, we assume uniform
probability for all possible values. More formalized, we compute
P (v|e, p) by

P (v|e, p) = [(e, p, v) 2 K]
|{(e, p, v0)|(e, p, v0) 2 K}| (6)

3.3 Online Procedure
In the online procedure, we are given a user question q0. We can

compute p(v|q0) by Eq (7). And we return argmaxv P (v|q0) as
the answer.

P (v|q0) =
X

e,p,t

P (q0)P (v|e, p)P (p|t)P (t|e, q0)P (e|q0) (7)

, where P (p|t) is derived from offline learning in Sec 4, and other
probability terms are computed in Sec 3.2.

Complexity of Online Procedure: In the online procedure, we
enumerate q0’s entities, templates, predicates, and values in order.
We treat the number of entities per question, the number of con-
cepts per entity, and the number of values per entity-predicate pair
as constants. So the complexity of the online procedure is O(|P |),
which is caused by the enumeration on predicate. Here |P | is the
number of distinct predicates in the knowledge base.

4. PREDICATE INFERENCE
In this section, we present how we infer predicates from tem-

plates, i.e., the estimation of P (p|t). We treat the distribution
P (P |T) as parameters and then use the maximum likelihood (ML)

568

e: entity; t: template; p: predicate

question2answer: a generative
process
• A qa pair

• Q: How many people live in Honolulu?
• A: It’s 390K.

kw.fudan.edu.cn/qa

question2answer: entity linking

How many people live in Honolulu?

kw.fudan.edu.cn/qa

question2answer:
conceptualization

How many people live in Honolulu?

How many people live in $city?

kw.fudan.edu.cn/qa

question2answer: predicate
inference

How many people live in Honolulu?

How many people live in $city? population

kw.fudan.edu.cn/qa

question2answer: value lookup

How many people live in Honolulu?

How many people live in $city? population

390K

kw.fudan.edu.cn/qa

Probabilistic graph model

How many people live in Honolulu?

How many people live in $city? population

390K

kw.fudan.edu.cn/qa

corpus may be wrong), we create a probabilistic model for QA over
a knowledge base below. We highlight the uncertainty from the
question’s intent to the knowledge base’s predicates [18]. For ex-
ample, the question “where was Barack Obama from” is related to
at least two predicates in Freebase: “place of birth” and “place lived
location”. In DBpedia, who founded $organization? re-
lates to predicates founder and father.

PROBLEM DEFINITION 1. Given a question q, our goal is to
find an answer v with maximal probability (v is a simple value):

argmax
v

P (V = v|Q = q) (1)

To illustrate how a value is found for a given question, we
proposed a generative model. Starting from the user question q,
we first generate/identify its entity e according to the distribution
P (e|q). After knowing the question and the entity, we generate the
template t according to the distribution P (t|q, e). The predicate
p only depends on t, which enables us to infer the predicate p by
P (p|t). Finally, given the entity e and the predicate p, we generate
the answer value v by P (v|e, p). v can be directly returned or em-
bedded in a natural language sentence as the answer a. We illustrate
the generation procedure in Example 1, and shows the dependen-
cy of these random variables in Figure 4. Based on the generative
model, we compute P (q, e, t, p, v) in Eq (2). Now Problem 1 is
reduced to Eq (3).

P (q, e, t, p, v) = P (q)P (e|q)P (t|e, q)P (p|t)p(v|e, p) (2)

argmax
v

X

e,t,p

P (v|q, e, t, p) (3)

Figure 4: Probabilistic Graph
EXAMPLE 1. Consider the generative process of (q3, a3) in Ta-

ble 3. Since the only entity in q3 is “Honolulu”, we generate the
entity node d (in Figure 1) by P (e = d|q = q3) = 1. By conceptu-
alizing “Honolulu” to a city, we generate the template How many
people are there in $city?. Note that the correspond-
ing predicate of the template is always “population”, no matter
which specific city it is. So we generate predicate “population” by
distribution P (p|t). After generating entity “Honolulu” and pred-
icate “population”, the value “390k” can be easily found from the
knowledge base in Figure 1. Finally we use a natural language
sentence a3 as the answer.

Outline of the following subsections Given the above objective
function, our problem is reduced to the estimation of each prob-
ability term in Eq (2). The term P (p|t) is estimated in the offline
procedure in Sec 4. All other probability terms can be directly com-
puted by the off-the-shelf solutions (such as NER, conceptualiza-
tion). We elaborate the calculation of these probabilities in Sec 3.2.
And we elaborate the online procedure in Sec 3.3.

3.2 Probability Computation
In this subsection, we compute each probability term in Eq (2)

except P (p|t).

Entity distribution P (e|q) The distribution represents the enti-
ty identification from the question. We identify entities that meet
both conditions: (a) it is an entity in the question; (b) it is in the
knowledge base. We use Stanford Named Entity Recognizer [13]
for (a). And we then check if it is an entity’s name in the knowledge
base for (b). If there are multiple candidate entities, we simply give
them uniform probability.

We optimize the computation of P (e|q) in the offline procedure
by q’s answer. As illustrated in Sec 4.1, we already extracted a set
of entity-value pairs EVi for question qi and answer ai, where the
values are from the answer. We assume the entities in EVi have
equal probability to be generated. So we obtain:

P (e|qi) =
[9v, (e, v) 2 EVi]

|{e0|9v, (e0, v) 2 EVi}|
(4)

,where [.] is the Iverson bracket. As shown in Sec 7.5, this approach
is more accurate than directly using the NER approach.

Template distribution P (t|q, e) A template is in the form of
When was $person born?. In other words, it is a question
with the mention of an entity (e.g., “Barack Obama”) replaced by
the category of the entity (e.g., $person).

Let t = t(q, e, c) indicate that template t is obtained by replacing
entity e in q by e’s category c. Thus, we have

P (t|q, e) = P (c|q, e) (5)

, where P (c|q, e) is the category distribution of e in context q. In
our work, we directly apply the conceptualization method in [25]
to compute P (c|q, e).

Value (answer) distribution P (v|e, p) For an entity e and a
predicate p of e, it is easy to find the predicate value v by look-
ing up the knowledge base. For example, in Figure 1, let entity
e = Barack Obama, and predicate p = dob. We easily get Oba-
ma’s birthday, 1961, from the knowledge base. In this case, we
have P (1961|Barack Obama, dob) = 1, since Barack Obama only
has one birthday. Some predicates may have multiple values (e.g.,
the children of Barack Obama). In this case, we assume uniform
probability for all possible values. More formalized, we compute
P (v|e, p) by

P (v|e, p) = [(e, p, v) 2 K]
|{(e, p, v0)|(e, p, v0) 2 K}| (6)

3.3 Online Procedure
In the online procedure, we are given a user question q0. We can

compute p(v|q0) by Eq (7). And we return argmaxv P (v|q0) as
the answer.

P (v|q0) =
X

e,p,t

P (q0)P (v|e, p)P (p|t)P (t|e, q0)P (e|q0) (7)

, where P (p|t) is derived from offline learning in Sec 4, and other
probability terms are computed in Sec 3.2.

Complexity of Online Procedure: In the online procedure, we
enumerate q0’s entities, templates, predicates, and values in order.
We treat the number of entities per question, the number of con-
cepts per entity, and the number of values per entity-predicate pair
as constants. So the complexity of the online procedure is O(|P |),
which is caused by the enumeration on predicate. Here |P | is the
number of distinct predicates in the knowledge base.

4. PREDICATE INFERENCE
In this section, we present how we infer predicates from tem-

plates, i.e., the estimation of P (p|t). We treat the distribution
P (P |T) as parameters and then use the maximum likelihood (ML)

568

Probability Computation
• Source

• QA corpora (42M Yahoo! Answers)
• Knowledge base such as Freebase
• Probase(a large scale taxonomy)

• Directly estimated from data
• Entity distribution P (e|q)
• Template distribution P(t|q,e)
• Value (answer) distribution P(v|e,p)

Question Answer

When was Barack Obama born? The politician was born in 1961.

When was Barack Obama born? He was born in 1961.

How many people are there in Honolulu? It’s 390K.

kw.fudan.edu.cn/qa

Yahoo! Answers QA pairs

P(P|T) estimation
• We treat P(P|T) as parameters, and learn the parameter using

maximum likelihood estimator, maximizing the likelihood of
observing QA corpora

• An EM algorithm is used for parameter estimation

kw.fudan.edu.cn/qa

Answering complex questions
• When was Barack Obama’s wife born?

• (Who is) Barack Obama’s wife?
• When was Michelle Obama born?

• How to decompose the question into a series of binary questions?

• A binary question sequence is meaningful, only if each of the binary
question is meaningful.

• A dynamic programming (DP) algorithm is employed to find the
optimal decomposition.

kw.fudan.edu.cn/qa

We highlight that in the decomposed question sequence, each
question except the first one is a question string with an entity vari-
able. The question sequence can only be materialized after the vari-
able is assigned with a specific entity, which is the answer of the im-
mediately previous question. Continue the example above, the sec-
ond question When was Michelle Obama born? is When
was $e born? in the question sequence. $e here is the variable
representing the answer of the first question Barack Obama’s
wife. Hence, given a complex question q, we need to decompose
it into a sequence of k questions A = (q̌i)

k
i=0 such that:

• Each q̌i (i > 0) is a BFQ with entity variable ei, whose value is
the answer of q̌i�1.

• q̌0 is a BFQ that its entity is equal to the entity of q.

EXAMPLE 3 (QUESTION SEQUENCE). Consider the ques-
tion f� in Table 1. One natural question sequence is q̌0= Barack
Obama’s wife and q̌1 = When was $e1 born?. We can
also substitute an arbitrary substring to construct the question se-
quence, such as q̌00 =was Barack Obama’s wife born and
q̌
0
1=When $e?. However, the later question sequence is invalid s-

ince q̌
0
0 is neither an answerable question nor a BFQ.

Given a complex question, we construct a question sequence in
a recursive way. We first replace a substring with an entity vari-
able. If the substring is a BFQ that can be directly answered, it is
q0. Otherwise, we continue the above procedure on the substring
until we meet a BFQ or the substring is a single word. However, as
shown in Example 3, many question decompositions are not valid
(answerable). Hence, we need to measure how likely a decomposi-
tion sequence is answerable. More formally, let A(q) be the set of
all possible decompositions of q. For a decomposition A 2 A(q),
let P (A) be the probability that A is a valid (answerable) question
sequence. Out problem thus is reduced to

argmax
A2A(q)

P (A) (25)

Next, we elaborate the estimation of P (A) and how we solve the
optimization problem efficiently in Sec 5.2 and 5.3, respectively.

5.2 Metric
The basic intuition is that A = (q̌i)

k
i=0 is a valid question se-

quence if each individual question q̌i is valid. Hence, we first es-
timate P (q̌i) (the probability that qi is a valid question), and then
aggregate each P (q̌i) to compute P (A).

We use QA corpora to estimate P (q̌i). q̌ is a BFQ with entity
variable $e. A question q matches q̌, if we can get q̌ by replacing
a substring of q with $e. We say the match is valid, if the replaced
substring is a mention of the entity in q. For example, When was
Michelle Obama born? matches When was $e born? and When
was $e?. However, only the former one is valid since only Michelle
Obama is an entity. We denote the number of all questions in the
QA corpora that matches q̌ as fo(q̌), and the number of questions
that validly matches q̌ as fv(q̌). Both fv(q̌i) and fo(q̌i) are counted
by the QA corpora. We estimate P (q̌i) by:

P (q̌i) =
fv(q̌i)

fo(q̌i)
(26)

The rationality is clear: the more valid match the more likely q̌i is
answerable. fo(q̌i) is used to punish the over-generalized question
pattern. We show an example of P (q̌i) below.

EXAMPLE 4. Suppose q̌1 = When was $e born?, q̌2 =
When $e?, the QA corpora is shown in Table 3. Clearly, q1 sat-
isfies the patterns of q̌1 and q̌2. However, only q̌1 is a valid pat-
tern for q1 since when matching q1 to q̌1, the replaced substring
corresponds to a valid entity “Barack Obama”. Thus we have
fv(q̌1) = fo(q̌1) = fo(q̌2) = 2. However, fv(q̌0) = 0. Due
to Eq (26), P (q̌1) = 1, P (q̌2) = 0.

Given each P (q̌i), we define P (A). We assume that each q̌i in
A being valid are independent. A question sequence A is valid if
and only if all q̌i in it are valid. So we compute P (A) by:

P (A) =
Y

q̌2A
P (q̌) (27)

5.3 Algorithm
Given P (A), our goal is to find the question sequence maxi-

mizing P (A). This is not trivial due to the huge search space.
Consider a complex question q of length |q|, i.e., the number of
words in q. There are overall O(|q|2) substrings of q. If q finally
is decomposed into k sub-questions, the entire search space will
be O(|q|2k), which is unacceptable. In this paper, we proposed
a dynamic programming based solution to solve our optimization
problem, with complexity O(|q|4). Our solution is developed up-
on the local optimality property of the optimization problem. We
establish this property in Theorem 2.

THEOREM 2 (LOCAL OPTIMALITY). Given a complex ques-
tion q, let A⇤(q) = (q̌⇤0 , ..., q̌

⇤
k) be the optimal decomposition of q,

then 81 i k, 9qi ⇢ q, A⇤(qi) = (q̌⇤0 , .., q̌
⇤
i) is the optimal

decomposition of qi.

Theorem 2 suggests a dynamic programming (DP) algorithm.
Consider a substring qi of q, qi is either (1) a primitive BFQ (non-
decomposable) or (2) a string that can be further decomposed. For
case (1), A⇤(qi) contains a single element, i.e., qi itself. For case
(2), A⇤(qi) = A⇤(qj)�r(qi, qj), where qj ⇢ qi is the one with the
maximal P (r(qi, qj))P (A⇤(qj)), � is the operation that appends
a question at the end of a question sequence, and r(qi, qj) is the
question generated by replacing qj in qi with a placeholder “$e”.
Thus, we derive the dynamic programming equation:

P (A⇤(qi)) = max{�(qi), max
qj⇢qi

{P (r(qi, qj))P (A⇤(qj))}} (28)

where �(qi) is the indicator function to determine whether q1 is a
primitive BFQ. That is �(qi) = 1 when qi is a primitive BFQ, or
�(qi) = 0 otherwise.

Algorithm 2 outlines our dynamic programming algorithm. We
enumerate all substrings of q in the outer loop (Line 1). Within
each loop, we first initialize A⇤(qi) and P (A⇤(qi)) (Line 2-4). In
the inner loop, we enumerate all substrings qj of qi (Line 5), and
update A⇤(qi) and P (A⇤(qi)) (Line 7-9). Note that we enumerate
all qis in the ascending order of their lengths, which ensures that
P (A⇤()) and A⇤() are known for each enumerated qj .

The complexity of Algorithm 2 is O(|q|4), since both loops enu-
merates O(|q|2) substrings. In our QA corpora, over 99% ques-
tions contain less than 23 words (|q| < 23). So this complexity is
acceptable.

6. PREDICATE EXPANSION
In a knowledge base, many facts are not expressed by a direct

predicate, but by a path consisting of multiple predicates. As shown
in Figure 1, “spouse of” relationship is represented by three pred-
icates marriage ! person ! name. We denote these multi-
predicate paths as expanded predicates. Answering questions over
expanded predicates highly improves the coverage of KBQA.

571

Experiments
KBQA Bootstrapping

Corpus 41M QA pairs 256M sentences

Templates 27,126,355 471,920

Predicates 2782 283

Templates per predicate 9751 4639

KBQA finds significantly more templates and predicates than its competitors despite that the corpus
size of bootstrapping is larger.

Concept based templates are meaningful

Table 14: Time cost
Time Time Complexity

Question Understanding Question Evaluation
DEANNA 7738ms NP-hard NP-hard
gAnswer 990ms O(|V |3) NP-hard

Question Parsing Probabilistic Inference
KBQA 79ms O(|q|4) O(|P |)

Complexity Analysis. We also investigate their time complexity
in Table 14, where |q| is the question length, and |V | in gAnswer
is the number of vertices in RDF graph. As can be seen, all pro-
cedures of KBQA have polynomial time complexity, while both
gAnswer and DEANNA suffer from some NP-hard procedures.
The complexity of question understanding for gAnswer is O(|V |3).
Such complexity is unacceptable on a billion scale knowledge base.
In contrast, the complexity of KBQA is O(|q|4) and O(|P |) (|P | is
the number of distinct predicates), which is independent of the size
of the knowledge base. As shown in Sec 5.3, over 99% questions’
length is less than 23. Hence, KBQA has a significant advantage
over its competitors in terms of time complexity.

7.5 Detailed Components
We investigate the effectiveness of the three specific components

in KBQA: entity&value identification (in Sec 4.1), complex ques-
tion answering (in Sec 5), and predicate expansion (in Sec 6).

Precision of Entity&Value Identification Note that most previ-
ous studies focused solely on entity extraction and cannot be used
to extract entity and value simultaneously. Hence, we can only
compare to a state-of-the-art solution for entity identification, S-
tanford Named Entity Recognizer [13]. We randomly select 50 QA
pairs whose answers are covered by the knowledge base. We man-
ually check whether the extracted entity is correct. Our approach
correctly identifies entities for 36 QA pairs (72%), which is superi-
or to Stanford NER that identifies entities correctly for only 15 QA
pairs (30%). This result suggests that joint extraction of entities is
better than the independent extraction.

Effectiveness to Answer Complex Questions Since no bench-
mark is available for complex question answering, we constructed
8 such questions as shown in Table 15. All these questions are typ-
ical complex questions posed by real users. We compare KBQA
with two state-of-the-art QA engines: Wolfram Alpha and gAn-
swer. Table 15 shows the result. We found that KBQA beats the
strong competitors in answering complex questions. This implies
that KBQA is effective in answering complex questions.

Table 15: Complex Question Answering. WA stands for Wolfram Al-
pha, and gA stands for gAnswer.

Question KBQA WA gA
How many people live in the capital of Japan? Y Y N
When was Barack Obama’s wife born? Y Y N
What are books written by author of Harry Potter? Y N N
What is the area of the capital of Britain? Y N N
How large is the capital of Germany? Y N N
What instrument do members of Coldplay play? Y N N
What is the birthday of the CEO of Google? Y N N
In which country is the headquarter of Google located? Y N N

Effectiveness of Predicate Expansion Next we show that our
predicate expansion procedure is effective in two aspects. First,
the expansion can find significantly more predicates. Second, the
expanded predicates enable KBQA to learn more templates. We
present the evaluation results in Table 16. We found that (1) the
expansion (with length varying from 2 to k) generates ten times the
number of direct predicates (with length 1), and (2) with the ex-
panded predicates, the number of templates increases by 57 times.

We further use two case studies to show (1) the expanded pred-
icates are meaningful and (2) the expanded predicates are correct.

We list 5 expanded predicates we learned in Table 18. We found
that all these expanded predicates found by KBQA are meaningful.
We further choose one expanded predicate, marriage ! person

! name, to see whether the templates learned for this predicate
are correct or meaningful. We list five learned templates in Ta-
ble 17. These templates in general are reasonable.

Table 16: Effectiveness of Predi-
cate Expansion

Length #Template #Predicate
1 467,393 246
2 to k 26,658,962 2536
Ratio 57.0 10.3

Table 17: Templates for
marriage ! person ! name

Who is $person marry to?
Who is $person’s husband?
What is $person’s wife’s name?
Who is the husband of $person?
Who is marry to $person?

Table 18: Examples of Expanded Predicates
Expanded predicate Semantic
marriage ! person ! name spouse
organization_members ! member ! alias organization’s member
nutrition_fact ! nutrient ! alias nutritional value
group_member ! member ! name group’s member
songs ! musical_game_song ! name songs of a game

8. RELATED WORKS
Natural Language Documents vs Knowledge Base QA is very

dependent on the quality of corpora. Traditional QA systems use
web docs or Wikipedia as the corpora to answer questions. State-
of-the-art methods in this category [24, 19, 9, 15] usually take the
sentences from the web doc or Wiki as candidate answers, and rank
them based on the relatedness of words between questions and can-
didate answers. They also tend to use noise reduction methods such
as question classification [22, 36] to increase the answer’s quality.
In recent years, the emergence of many large scale knowledge base,
such as Google Knowledge Graph, Freebase [3], and YAGO2[16],
provide a new opportunity to build a better QA system [23, 29, 28,
14, 33, 12]. The knowledge base in general has a more structured
organization and contains more clear and reliable answers com-
pared to the free text based QA system.

QA Systems Running on Knowledge Base The core process of
QA systems built upon knowledge base is the predicate identifica-
tion for questions. For example, the question can be answered if
we can find the predicate “population” from question How many
people are there in Honolulu. The development of
these knowledge bases experienced three major stages: rule based,
keyword based, and synonym based according to predicate identi-
fication approach. Rule based approaches map questions to predi-
cates using manually constructed rules. For example, Ou et al. [23]
think the question in the form of What is the <xxx> of
entity? should be mapped to the predicate <xxx>. Manually
constructed rules always have high precision but low recall. Key-
word based methods [29] use keywords or phrases in the questions
as features to find the mappings between questions and predicates.
But in general, it is difficult to use keywords to find mappings
between questions and complicated predicates. For example, it
is hard to map question how many people are there in
...? to the predicate “population” based on keywords such as
“how many”, “people”, “are there”, etc. Synonym based approach-
es [28, 33] extend keyword based methods by taking synonyms
of the predicates into consideration. This enables to answer more
questions. The key factor of the approach is the quality of syn-
onyms. Unger et al. [28] uses the bootstrapping [14] from web
docs to generate synonyms. Yahya et al. [33] generates synonyms
from Wikipedia. However, synonym based approaches still cannot
answer complicated questions due to the same reason as the key
word based approach. True knowledge [26] uses key words/phras-
es to represent a template. In contrast, our template is a question

575

Experiments

Results over QALD-5. The results verify the effectiveness of KBQA over BFQs.

Experiments

Results of hybrid systems on QALD-3 over DBpedia. The results verify the
effectiveness of KBQA for a dataset that the BFQ is not a majority.

Hybrid systems
• First KBQA
• If KBQA gives no reply, then baseline systems.

Outline

• KBQA background
• 不倒翁问答系统
• Template based KBQA
• Conclusion

Conclusion
• 样本增强可以显著提升问答模型的健壮性
• 基于阅读理解的IRQA可以显著提升召回率
• Pattern+DL可以显著提升问答模型的泛化能力
• 规则系统可以提升问答系统的复杂问题的回答能力
• 支撑性数据是确保问答系准确性的前提

• 如何实现一个实用化的知识问答系统？
• 实用化问答系统的关键技术研究十分缺乏

• 如何有效评测一个知识问答系统？
• 有效的知识问答评测数据集、评测指标的研究仍然十分缺乏

Reference

• Wanyun Cui, et al., KBQA: Learning Question Answering over QA
Corpora and Knowledge Bases, (VLDB 2017)

• Wanyun Cui, et al., KBQA: An Online Template Based Question
Answering System over Freebase, (IJCAI 2016), demo

• Lihan Chen, et al, Entity Linking for Short Text, Technique report of
KW.

• Jiaqing Chen, et al, Incorporating complicated rules in deep
generative network. Technique report of KW

Thank you!

DEMO
http://218.193.131.250:20013/
http://shuyantech.com/qa

