

基于知识图谱的问答系统关键技术

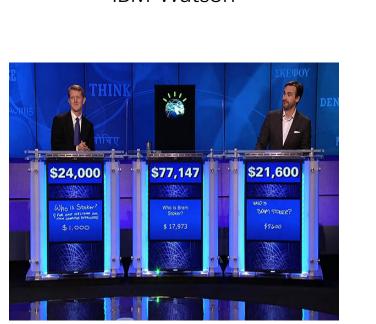
肖仰华(Yanghua Xiao) 复旦大学知识工场实验室(Kw.fudan.edu.cn) 上海数眼科技发展有限公司(shuyantech.com)

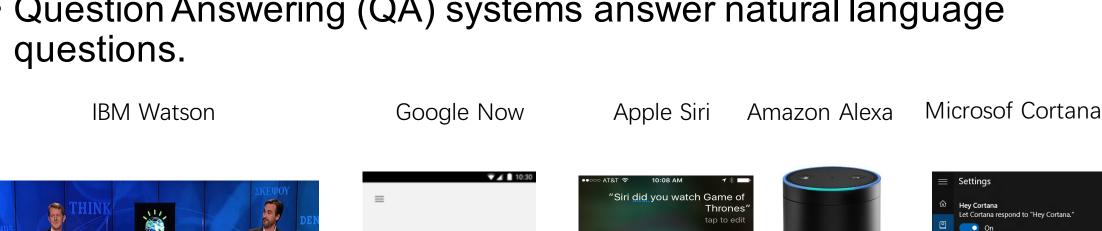
Outline



- <u>KBQA background</u>
 - 不倒翁问答系统
 - Template based KBQA
 - Conclusion

kw.fudan.edu.cn/ga





I'm not sure, but I'm

spin-off.

hoping for a Nymeria

• Question Answering (QA) systems answer natural language

Google

Upcoming

Costco Tire Center, 1601 Coleman Ave, ara CA 95050 United State 0

LEAVE IN 20 MINUTES

43 min · Driving · US·101 S

Next event

Costco Today, 12:00 - 1:00 PM

0

"Ok Google... Open Grnail" 🛛 👢

more battery

Respond best: To anyone

learn vour voice first.

Find flights and more

on my device.

Taskbar tidbits

sk me anything

💽 On

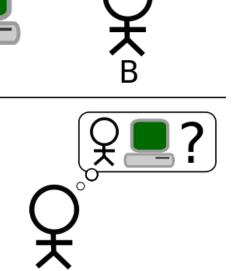
Detect tracking info, such as flights, in messages

Let Cortana pipe up from time to time with

Why QA

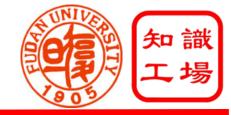
QA application:

- One of the most natural human-computer interaction
- Key components of Chatbot, which attracts wide research interests from industries
- QA for AI:
 - One of most important tasks to evaluate the machine intelligence: Turing test
 - Important testbed of many AI techniques, such as machine learning, natural language processing, machine cognition



Turing test

Α

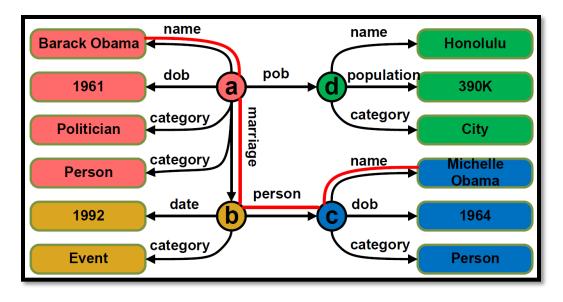


Why KBQA?

More and More Knowledge bases are created

- Google Knowledge graph, Yago, WordNet, FreeBase, Probase, NELL, CYC, DBPedia
- Large scale and high quality

The boost of knowledge bases

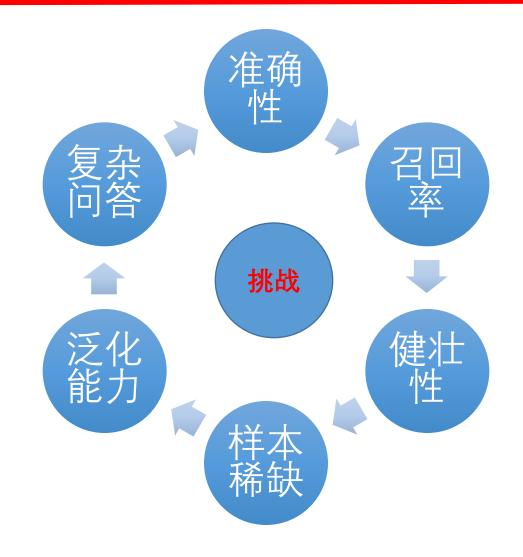


A piece of knowledge base, which consist of triples such as (d, population, 390k)

实用化知识问答-机遇与挑战

- 机遇: 从人工智障到人工智能
 - 大量的问答模型研究
 - •大量的知识库与语料
 - 挑战
 - 如何构建一个实用化问答系统

为什么现在人工智能助理都像人工智障? 2017十大"人工智障"事件 科技巨头无一幸免 从人工智能变成"人工智障",聊天机器人殇在哪?



Outline



- KBQA background
 - <u>不倒翁问答系统</u>
 - Template based KBQA
 - Conclusion

• "不倒翁"知识问答DEMO

- http://218.193.131.250:20013/
- <u>http://shuyantech.com/qa</u>
- 知识问答
 - <u>知识图谱、深度学习、规则系统</u>

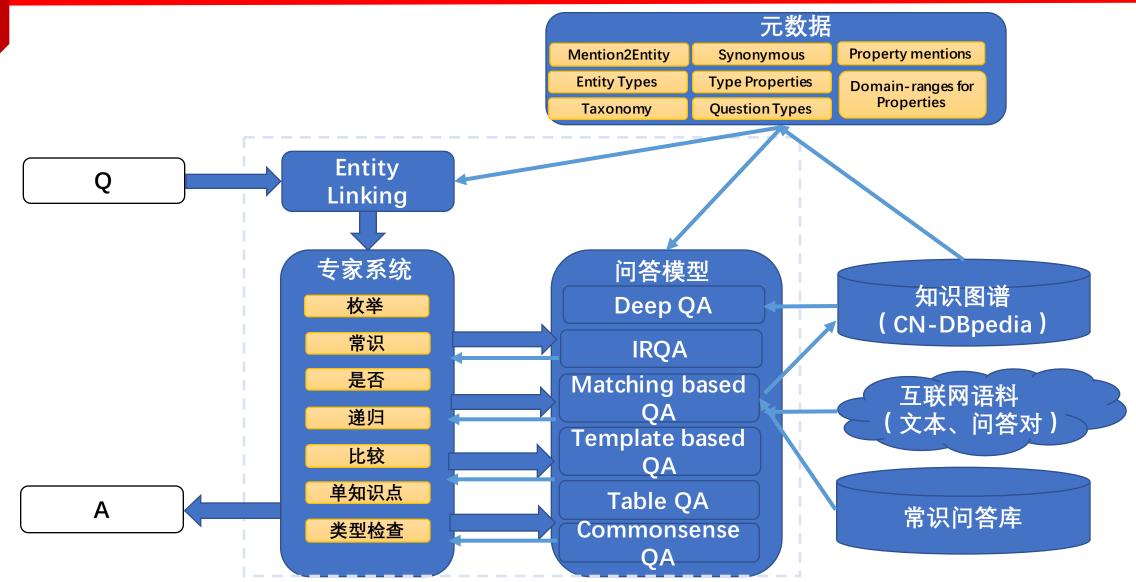
中文QA X

输入问题 七里香谁唱的? Submit • 七里香谁唱的? • 七里香的作词是谁? • 长安乱谁写的 • 长城有多长 • 江泽民的老婆是谁 支持问题例子 • 谁知道谁是刘德华女儿的妈妈是谁 • 刘德华女儿的母亲是哪里人啊啊 • 魔法少女小圆的编剧还有什么作品 • 上海和北京哪个大? • 你知道北京和上海哪个人多嘛 • 法国最大城市和美国首都哪个更大 • 请问特朗普和鲁迅谁比较矮 • 邪影芳灵有什么技能 • 复日有哪些院士? • 周杰伦为别人作过哪些歌? Input: 七里香谁唱的? 答案 Output: 周杰伦

1.1874 七里香(周杰伦演唱歌曲) 歌曲原唱 周杰伦 Reason: ~谁唱的->歌曲原唱 0.1860 七里香(周杰伦2004年发行专辑) 专辑歌手 周杰伦

额外信息

"不倒翁"知识问答系统架构

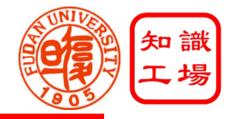


• Entity Linking

- 实体识别、消歧、链接到知识库
- 专家系统
 - •基于复杂规则解决递归、比较等复杂问题
 - 决定子模块的选择性调用
 - •复杂问题存在规律性且缺少训练数据,规则系统是较优选择

• 元数据

•提供问答系统所需要的语言知识、词汇知识、本体等元数据



- Matching based QA
 - 基于深度学习对问题库进行模糊匹配
 - 解决<u>常识类问答</u>
 - e.g. 为什么天空是蓝色的
 - Deep QA
 - 基于深度学习将问句匹配到知识库中的某条具体知识
 - 解决<u>单条事实类问答</u>
 e.g. 七里香是谁唱的
 - IRQA
 - 到互联网上搜索,并使用深度机器阅 读理解模型获取答案
 - 获取到的答案可以用于补全知识库
 - 解决<u>知识库缺失</u>问题
 - e.g. 鲁迅的身高是多少

- Template based QA
 - 基于taxonomy、问答语料对训练生成 概念语义模板
 - 利用概念语义模板对问题进行理解, 完成回答
 - 适用于对于新实体的问答
 - Eg. 华为P20多大尺寸?
- Table/list QA
 - 基于table、list回答枚举类问题
 - Eg, 复旦有哪些院士?
- Commonsense QA
 - 回答常识问答类问题
 - Eg, 天空为什么是蓝色的?

- 形式: 字符串(mention) → 实体(entity)或实体列表(entity list)
 示例
 - "复旦"→"复旦大学"
 - "周董"→"周杰伦"
 - "雨神" → ["萧敬腾(华语流行男歌手)", "雨神(中国神仙)"]
 - 作用:提高QA系统识别实体的能力

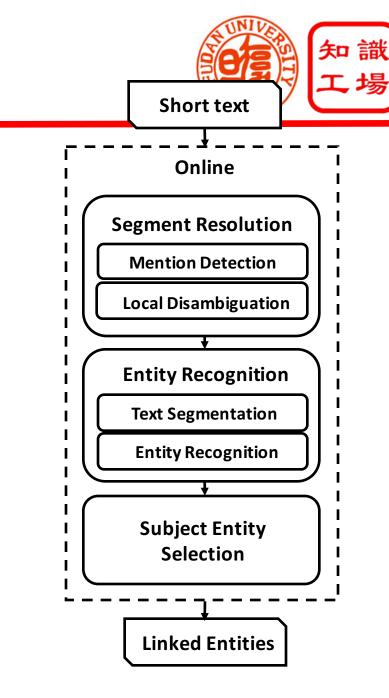
● 形式:属性 → 其他等价属性列表

- 示例
 - "妻子"→["夫人","老婆","伉俪","爱人","配偶"]
 - "出生日期"→["生日","出生年月","出生时间","诞辰"]
 - "主演"→["主要演员", "影片主演", "领衔主演"]
- 提高QA系统识别属性的能力

- 形式:属性 → domain → range
 - 示例
 - "妻子"→ 人物 → 人物
 - "出生日期" → 人物 → 日期
 - "主演"→ 电影 → 演员
 - 提高QA系统的准确率

针对QA的实体链接

- •段解析
 - 检测出所有的mention
 - 在有限的上下文进行局部链接
 - 利用实体概念作为细粒度的主题
 - 用词向量相似度来解决稀疏文本的问题
- 实体识别
 - •利用局部链接的分数进行语义文本划分
 - 根据段的语法语义信息进行实体识别
- 主体实体选择
 - •选择作为询问主体的实体
 - 实体关系 & 实体流行度

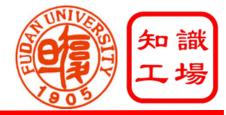


Running example

Textual similarity: sim_t(m, e)

- Input: text sequence: 刘若英语怎么样
- Segment Resolution
 - Detect all possible mention: "刘若"、"刘若英"、"英语"
 - Candidate entity generation: 刘若1_{KB}、刘若2_{KB}、刘若英_{KB}、英语_{KB}…
 - Local disambiguation: φ(刘若,刘若1_{кв})=0.4、φ(刘若,刘若2_{кв})=0.3··· $\mathbf{\varphi}(m,e) = \varepsilon \cdot sim_c(m,e) + (1-\varepsilon) \cdot sim_t(m,e) \quad \longrightarrow \text{ Topic coherence: } sim_c(m,e)$
- Entity Recognition

 - Text segmentation: 刘若|英语|怎么样 Entity recognition: 刘若、英语 $W = \operatorname{argmax} O(W) = \log(P(W)) = \sum_{i=1}^{l} P(w_i)$
- Global linking: rel(刘若,刘若1_{KB})=0.01、rel(刘若,刘若2_{KB})=0.2 _____ Calculate from KB
- Output: mention and entity {(刘若, 刘若2_{KB}), (英语, 英语_{KB})}



- Entity linking for QA 结果:
 - 准确率: 90%, 召回率: 94.3% +
 - F1: 92.0% +

习近平会见荷兰国王

央视网消息(新闻联播):国家主席习近平和夫人彭丽媛7日在中南海会见荷兰国王威廉-亚历山大和王后马克西玛。

习近平说、威廉亚历山大镇王和王后在中国传统新春佳节到来之际访导,我们感到格外 高兴。2014年,我对荷兰进行国事访问,同你共同确定了中荷开被务实的全面合作伙伴关系新 定位,为两国合作制定了发展目标和规划,在双方共同努力下,我们达成约共取再互助取果得 到落求,两国关系进入了历史最好时期,双方相互尊重就比核心利益和重大切,政治宣告不 解误化,贸易、投资、创新、人文等各领域交往合作成果半项,中荷关系正站在在新起点上,面 喻而的发展机遇,相信在新的一中里,两国将通过其2,一一一路不度更多的互利合作。

威廉-亚历山大国王首先向习近平主席和中国人民拜年, 祝愿新小车里中国取得新成 款, 和中关系取得新发展, 威廉-亚历山大孝示, 我祝贺中共十九大攻功召开, 中国发展有着 光明的未来, 荷兰始终高度重视发展对华关系, 相信一一一路"自议将给荷兰带来更多机遇, 荷方愿程极多与注意进作, 荷兰愿参加首届中国国际进口博览会, 荷方希望同中方加强在国际 和地区事务中的合作。

丁薛祥等参加会见。

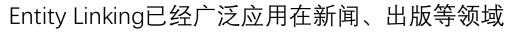
习近平说,[威廉-亚历山大]国王和王后在[中国]传统)新春佳节到来之际访华,我们感到格外 高兴。2014年,我对(荷兰)进行国事访问,同你共同确定了中荷开放务实的全面(合作伙伴关 系)新定位,为两国合作制定了发展目标和规划。在双方共同努力下,我们达成的共识和互 访成果得到落实,两国关系进入了历史最好时期,双方相互尊重彼此(核心利益)和重大关 切,政治互信不断深化,贸易、投资、创新、人文等各领域交往合作成果丰硕。中荷关系正 站在新起点上,面临新的发展机遇,相信在新的一年里,两国将通过共建"[一带一路]"开展 更多的互利合作。 [威廉-亚历山大]国王首先向习近平主席和[中国]人民拜年,祝愿新的 一年里[中国]取得新成就,荷中关系取得新发展。[威廉-亚历山大]表示,我祝贺[中共十九大] 成功召开,[中国]发展有着光明的未来。[荷兰)始终高度重视发展对华关系,相信"[一带一 路]"倡议将给[荷兰]带来更多机遇,荷方愿积极参与共建进程。[荷兰]愿参加首届[中国]国际 进口博览会。荷方希望同中方加强在国际和地区[事务]中的合作。 [丁薛祥]等参加会 见、 **李娜(中国女子网球名将)** 李娜,1982年2月26日出生于湖北 省武汉市,中国女子网球运动员。 2008年北京奥运会女子单打第四 名,2011年法国网球公开赛、2014 年澳大利亚网球公开赛女子单打冠 军,亚洲第一位大满贯女子单打冠 军,... 李娜(流行歌手、佛门女弟 子) 李娜(1963年7月25日 -),原名 牛志红,出生于河南省郑州市,毕 业于河南省戏曲学校,曾是中国大 陆女歌手,出家后法名释昌圣。毕 业后曾从事于豫剧演出,1997年皈 依佛门,法号"昌圣"。从《好人一 生平安...

打球的[李娜]和唱歌的[李娜]不是同一个人。 李娜(中国女子网球名将):人物、体育人物、运动员、名将 李娜(流行歌手、佛门女弟子):人物、演员、歌手、弟子

Table 4: Results of entity recognition task

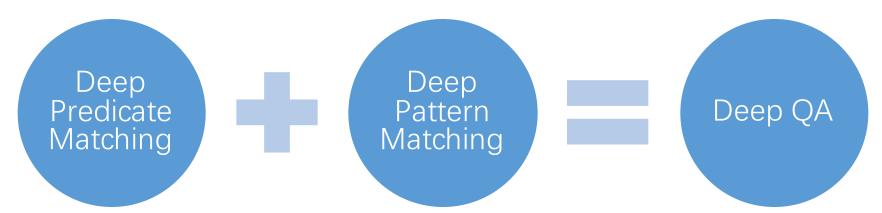
Methods	Prec.	Reca.	F1
Stanford NER [28]	58.7	39.5	47.2
Baidu Entity Annotation [2]	65.5	78.2	71.3
Our Method	91.0	89.4	90.2

中文通用Entity Linking的准确率



目标:

• 单知识点、且三元组知识库包含答案的问题



解决训练数据充足的问法和属性之间的 匹配问题,具有强大的错误容忍能力

Input:

请问哪个知道姚明的女的儿是啊啊打发

Output:

姚沁蕾

0.6161 姚明(中国篮球协会主席、中职联公司董事长) 女儿 姚沁蕾

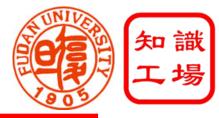
Few-Shot Learning:解决训练数据稀少的问法和属性之间的匹配问题,能处理垂直领域属性和特殊问法,无需训练即可添加规则

```
Input:
阿里巴巴的波士是谁啊
Output:
马云
```

1.2954 阿里巴巴集团 创始人 马云 Reason: ~的波士是谁->创始人

- ▼•复杂问题存在规律性且缺少训练数据,规则系统是较优选择
 - •目标:
 - 基于复杂规则决定子模块的选择和组合调用策略
 - 解决递归、比较等复杂问题
 - •规则配置:

If Q.contain('有哪些') and Q.entity.exists() and Q.entity.has_web_tables() Then web_tables = Q.entity.web_tables() answer = GetMaxSimilarity(Q, web_tables) return answer



- NLPCC-2016 KBQA, Testset, 1000 QA-pairs
 - 91.6% Accuracy
 - SougouQA Factoid Reading Comprehension Task, 验证集
 - 73.3% Exact Match
 - IRQA Hand-made Testset
 - Exact Match 83.3%
 - Acceptable 90.0%

2:可解释	但不完全正确	ð
1:正确		
0:错误		
标注	答案	问题
	忽必烈	哪个皇帝首先定都北京
	忽必烈	哪个皇帝第一个定都北京
0	玄烨	哪位皇帝第一个定都北京
1	元世祖忽必烈	最早定都北京的皇帝是谁
1	春宵苦短日高起	从此君王不早朝前一句是什么
1 3	王冶坪	江泽民的老婆是谁
1	王冶坪	江泽民的妻子是哪位
	朱安	鲁迅的妻子是谁
1 :	朱安	鲁迅的老婆是谁
	朱安	鲁迅的夫人是谁
	贺知章	哪位唐代诗人寿命最长
1	陆游	哪位宋代诗人寿命最长
2	魏小鹏	复旦大学的党委书记是谁
1	严峰	复旦大学图书馆的党委书记是谁
1	习妈	高达铁血的剧本是谁写的
	244.99万平方米	复旦大学张江校区的占地面积
1	斯塔夫里阿诺斯	全球通史的作者是谁
0 2	2012年	兰巴拉尔哪年战死的
	1949年	中华人民共和国那年成立的
	2.26米	姚明的身高有多高
	邓小平	哪位领导人寿命最长
	德国	2014年世界杯冠军是哪个队
	阿根廷	2014年世界杯亚军是哪个队
	小雨转雷阵雨	今天上海天气
	复旦大学	梁家卿的学校是
	博学而笃志	复旦大学的校训是什么
	1米9	特朗普的身高是多少
	湖南韶山	毛泽东的籍贯在哪里
	毛泽东	杨开慧是谁的妻子
1 3	毛泽东	江青是谁的老婆

*由于搜索引擎返回结果可能改变,IRQA的返回结果也可能会有不同

Outline

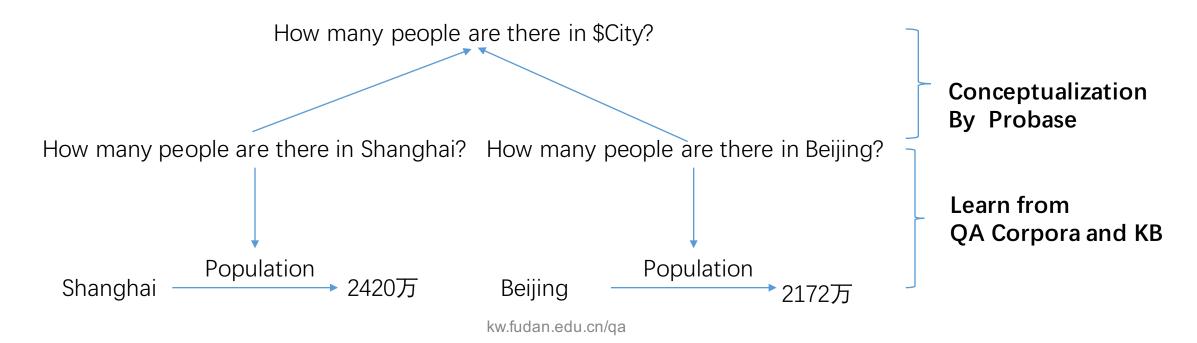


- KBQA background
 - 不倒翁问答系统
 - Template based KBQA
 - Conclusion

Our approach

Representation: concept based templates.

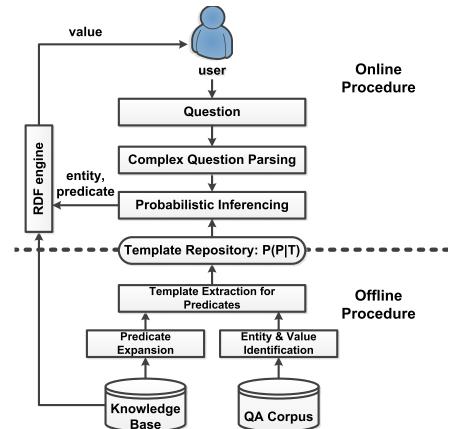
- Questions are asking about entities. The semantic of the question is reflected by its corresponding concept.
- Advantage: Interpretable, user-controllable
- Learn templates from QA corpus, instead of manfully construction.
 - 27 million templates, 2782 intents
 - Understand diverse questions



System Architecture

Offline procedure

- Learn the mapping from templates to predicates: P (p|t),
- Input: qa corpora, large scale taxonomy, KB
- Output: P(P|T)
- Online procedure
 - Parsing, predicate inference and answer retrieval
 - Input: binary factoid questions (BFQs)
 - Output: answers in KG



Problem Model

 $|EV_i|$

 Given a question q, our goal is to find an answer v with maximal probability (v is a simple value)

$$\underset{v}{\operatorname{arg\,max}} P(V = v | Q = q) \longrightarrow \underset{v}{\operatorname{arg\,max}} \sum_{e,t,p} \frac{P(v | q, e, t, p)}{V}$$

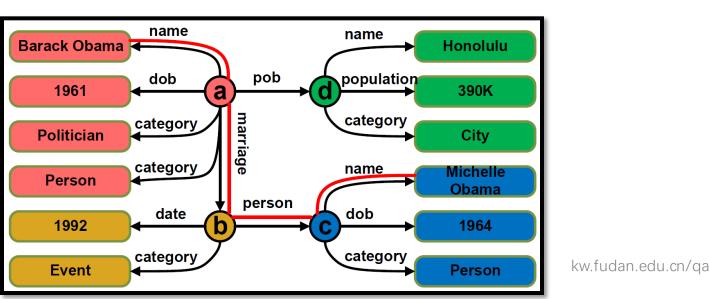
e: entity; t: template; p: predicate

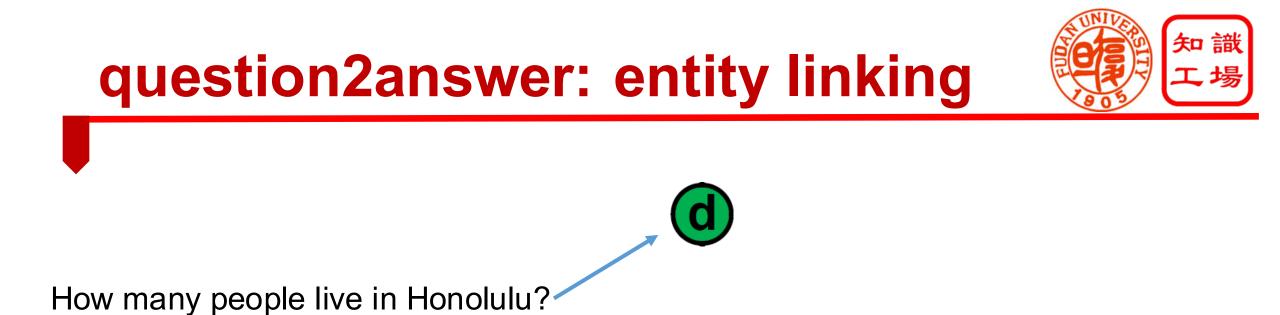
- Rationality of probabilistic inference
 - uncertainty (e.g. some questions' inten vague)
 - Incompleteness (e.g. the knowledge pase is almost ways incomplete),
 - noisy (e.g. answers in the QA corpus could be wro

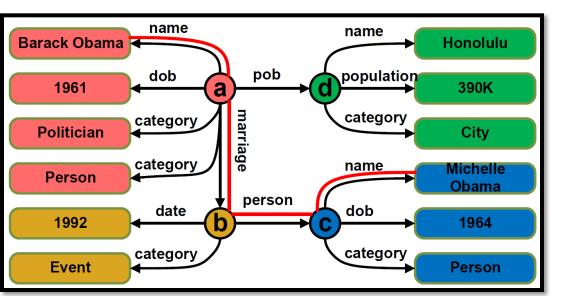
question2answer: a generative process

• A qa pair

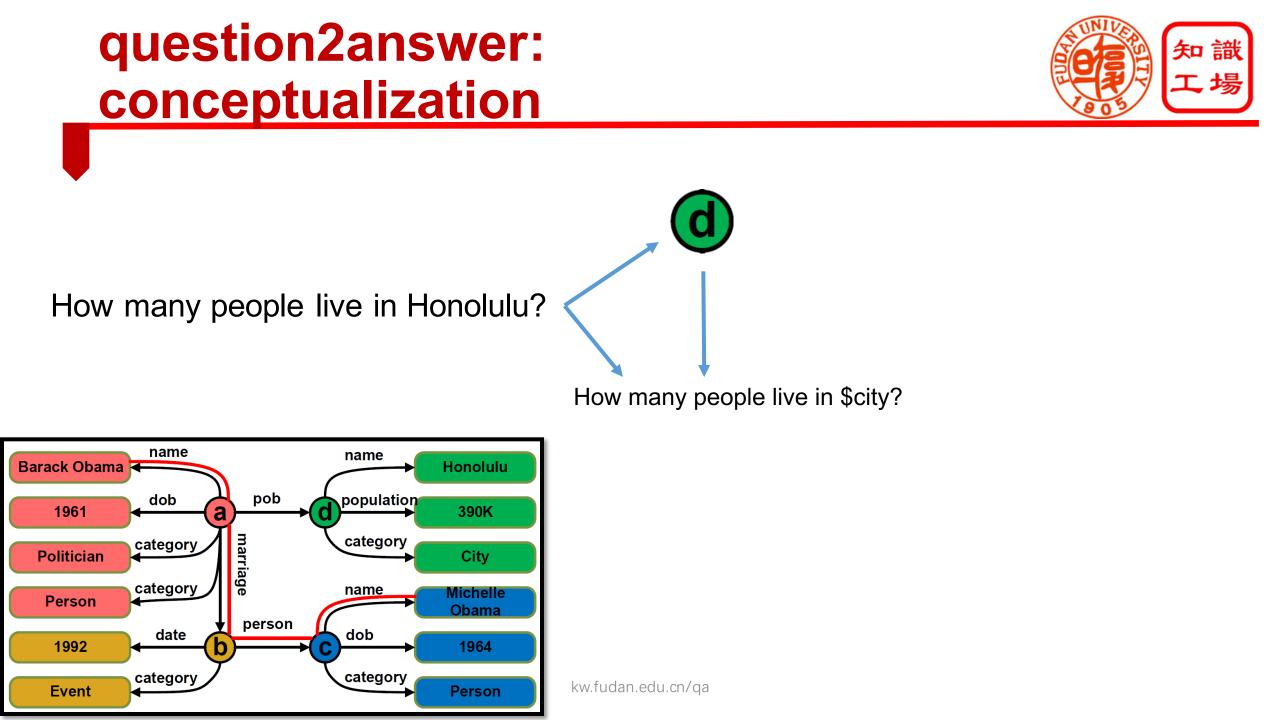
- Q: How many people live in Honolulu?
- A: It's 390K.

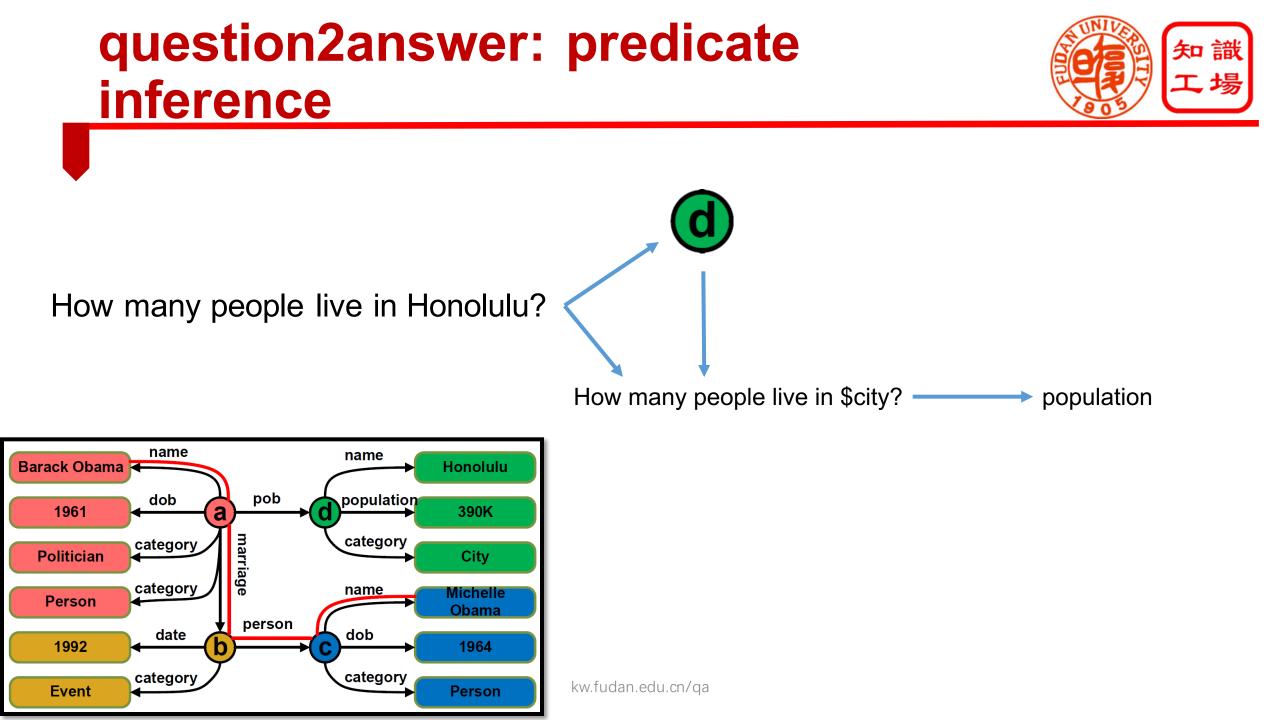


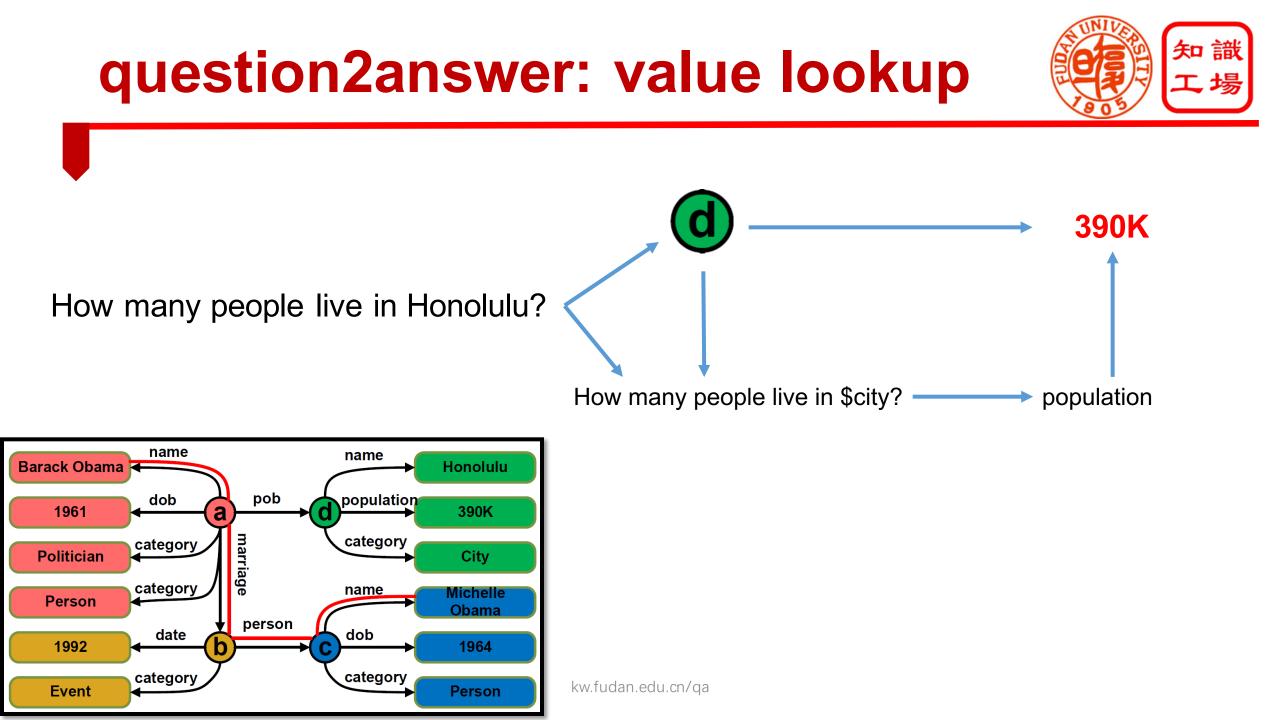


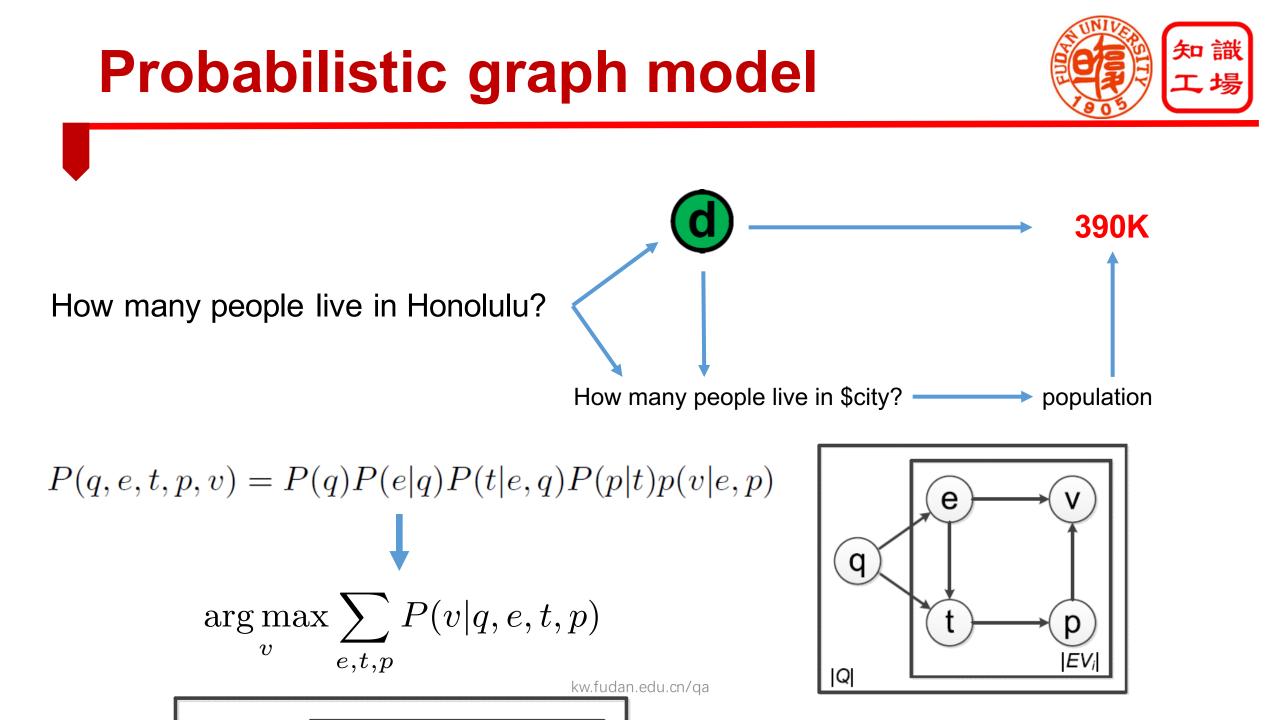


kw.fudan.edu.cn/qa

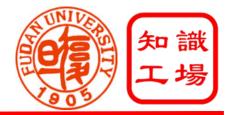








Probability Computation



Source

- QA corpora (42M Yahoo! Answers)
- Knowledge base such as Freebase
- Probase(a large scale taxonomy)
- Directly estimated from data
 - Entity distribution P (e|q)
 - Template distribution P(t|q,e)
 - Value (answer) distribution P(v|e,p)

Question	Answer
When was Barack Obama born?	The politician was born in 1961.
When was Barack Obama born?	He was born in 1961.
How many people are there in Honolulu?	lt's 390K.

Yahoo! Answers QA pairs

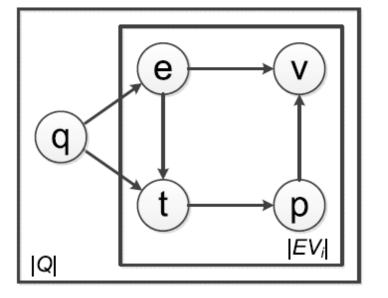
kw.fudan.edu.cn/qa

$\hat{\theta} = \arg\max L(\theta)$

- We treat P(P|T) as parameters, and learn the parameter using maximum likelihood estimator, maximizing the likelihood of observing QA corpora
 - An EM algorithm is used for parameter estimation

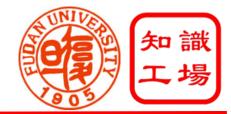
$$L(\theta) = \sum_{i=1}^{m} \log P(x_i) = \sum_{i=1}^{m} \log P(q_i, e_i, v_i)$$

=
$$\sum_{i=1}^{m} \log \left[\sum_{p \in P, t \in T} P(q_i) P(e_i | q_i) P(t | e_i, q_i) | \theta_{pt} P(v_i | e_i, p) \right]$$





Answering complex questions



• When was Barack Obama's wife born?

- (Who is) Barack Obama's wife?
- When was Michelle Obama born?
- How to decompose the question into a series of binary questions?

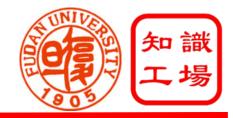
 $\arg \max_{\mathcal{A} \in \mathbb{A}(q)} P(\mathcal{A})$

• A binary question sequence is meaningful, only if each of the binary question is meaningful.

$$P(\mathcal{A}) = \prod_{\check{q} \in \mathcal{A}} P(\check{q})$$

• A dynamic programming (DP) algorithm is employed to find the optimal decomposition.

Experiments



	KBQA	Bootstrapping
Corpus	41M QA pairs	256M sentences
Templates	27,126,355	471,920
Predicates	2782	283
Templates per predicate	9751	4639

KBQA finds significantly more templates and predicates than its competitors despite that the corpus size of bootstrapping is larger.

$marriage \rightarrow person \rightarrow name$
Who is \$person marry to?
Who is \$person's husband?
What is \$person's wife's name?
Who is the husband of \$person?
Who is marry to \$person?

Concept based templates are meaningful

Experiments

	#pro	#ri	#par	R	R*	Р	P*
Xser	42	26	7	0.52	0.66	0.62	0.79
APEQ	26	8	5	0.16	0.26	0.31	0.50
QAnswer	37	9	4	0.18	0.26	0.24	0.35
SemGraphQA	31	7	3	0.14	0.20	0.23	0.32
YodaQA	33	8	2	0.16	0.20	0.24	0.30
				R R _{BFQ}	$R^* R^*_{BFQ}$		
KBQA+KBA	7	5	1	0.10 0.42	0.12 0.50	0.71	0.86
KBQA+Freebase	6	5	1	0.10 0.42	0.12 0.50	0.83	1.00
KBQA+DBpedia	8	8	0	0.16 0.67	0.16 0.67	1.00	1.00

Results over QALD-5. The results verify the effectiveness of KBQA over BFQs.

Experiments

知識工場

Hybrid systems

- First KBQA
- If KBQA gives no reply, then baseline systems.

System	R	R*	P	P*
SWIP	0.15	0.17	0.71	0.81
KBQA+SWIP	0.33(+0.18)	0.35(+0.18)	0.87(+0.16)	0.92(+0.11)
CASIA	0.29	0.37	0.56	0.71
KBQA+CASIA	0.38(+0.09)	0.44(+0.07)	0.66(+0.10)	0.76(+0.05)
RTV	0.3	0.34	0.34	0.62
KBQA+RTV	0.39(+0.09)	0.42(+0.08)	0.66(+0.32)	0.71(+0.09)
gAnswer	0.32	0.43	0.42	0.57
KBQA+gAnswer	0.39(+0.07)	-	-	-
Intui2	0.28	0.32	0.28	0.32
KBQA+Intui2	0.39(+0.11)	0.41(+0.09)	0.39(+0.11)	0.41(+0.09)
Scalewelis	0.32	0.33	0.46	0.47
KBQA+Scalewelis	0.44(+0.12)	0.45(+0.12)	0.60(+0.14)	0.62(+0.15)

Results of hybrid systems on QALD-3 over DBpedia. The results verify the effectiveness of KBQA for a dataset that the BFQ is not a majority.

Outline



- KBQA background
 - <u>不倒翁问答系统</u>
 - Template based KBQA
 - Conclusion

Conclusion

- 样本增强可以显著提升问答模型的<mark>健壮性</mark>
 - •基于阅读理解的IRQA可以显著提升召回率
 - Pattern+DL可以显著提升问答模型的泛化能力
 - •规则系统可以提升问答系统的复杂问题的回答能力
 - 支撑性数据是确保问答系<mark>准确性</mark>的前提
 - 如何实现一个实用化的知识问答系统?
 - 实用化问答系统的关键技术研究十分缺乏
 - 如何有效评测一个知识问答系统?
 - 有效的知识问答评测数据集、评测指标的研究仍然十分缺乏

- Wanyun Cui, et al., KBQA: Learning Question Answering over QA Corpora and Knowledge Bases, (VLDB 2017)
 - Wanyun Cui, et al., KBQA: An Online Template Based Question Answering System over Freebase, (IJCAI 2016), demo
 - Lihan Chen, et al, Entity Linking for Short Text, Technique report of KW.
 - Jiaqing Chen, et al, Incorporating complicated rules in deep generative network. Technique report of KW

Thank you!

DEMO <u>http://218.193.131.250:20013/</u> <u>http://shuyantech.com/qa</u>